Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 334
1.
Environ Res ; 252(Pt 3): 119052, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38697596

Biochar has emerged as a versatile and efficient multi-functional material, serving as both an adsorbent and catalyst in removing emerging pollutants (EPs) from aquatic matrices. However, pristine biochar's catalytic and adsorption capabilities are hindered by its poor surface functionality and small pore size. Addressing these limitations involves the development of functionalized biochar, a strategic approach aimed at enhancing its physicochemical properties and improving adsorption and catalytic efficiencies. Despite a growing interest in this field, there is a notable gap in existing literature, with no review explicitly concentrating on the efficacy of biochar-based functional materials (BCFMs) for removing EPs in aquatic environments. This comprehensive review aims to fill this void by delving into the engineering considerations essential for designing BCFMs with enhanced physiochemical properties. The focus extends to understanding the treatment efficiency of EPs through mechanisms such as adsorption or catalytic degradation. The review systematically outlines the underlying mechanisms involved in the adsorption and catalytic degradation of EPs by BCFMs. By shedding light on the prospects of BCFMs as a promising multi-functional material, the review underscores the imperative for sustained research efforts. It emphasizes the need for continued exploration into the practical implications of BCFMs, especially under environmentally relevant pollutant concentrations. This holistic approach seeks to contribute to advancing knowledge and applying biochar-based solutions in addressing the challenges posed by emerging pollutants in aquatic ecosystems.

2.
Environ Pollut ; : 124134, 2024 May 09.
Article En | MEDLINE | ID: mdl-38734050

This review article explores the challenges associated with landfill leachate resulting from the increasing disposal of municipal solid waste in landfills and open areas. The composition of landfill leachate includes antibiotics (0.001 to 100 µg), heavy metals (0.001 to 1.4 g/L), dissolved organic and inorganic components, and xenobiotics including polyaromatic hydrocarbons (10-25 µg/L). Conventional treatment methods, such as biological (microbial and phytoremediation) and physicochemical (electrochemical and membrane-based) techniques, are available but face limitations in terms of cost, accuracy, and environmental risks. To surmount these challenges, this study advocates for the integration of artificial intelligence (AI) and machine learning (ML) to strengthen treatment efficacy through predictive analytics and optimized operational parameters. It critically evaluates the risks posed by recalcitrant leachate components and appraises the performance of various treatment modalities, both independently and in tandem with biological and physicochemical processes. Notably, physicochemical treatments have demonstrated pollutant removal rates of up to 90% for various contaminants, while integrated biological approaches have achieved over 95% removal efficiency. However, the heterogeneous nature of solid waste composition further complicates treatment methodologies. Consequently, the integration of advanced ML algorithms such as Support Vector Regression, Artificial Neural Networks, and Genetic Algorithms is proposed to refine leachate treatment processes. This review provides valuable insights for different stakeholders specifically researchers, policymakers and practitioners, seeking to fortify waste disposal infrastructure and foster sustainable landfill leachate management practices. By leveraging AI and ML tools in conjunction with a nuanced understanding of leachate complexities, a promising pathway emerges towards effectively addressing this environmental challenge while mitigating potential adverse impacts.

3.
Article En | MEDLINE | ID: mdl-38703203

At present, the application of sewage treatment technologies is restricted by high sulfate concentrations. In the present work, the sulfate removal was biologically treated using an upflow anaerobic sludge blanket (UASB) in the absence/presence of light. First, the start-up of UASB for the sulfate removal was studied in terms of COD degradation, sulfate removal, and effluent pH. Second, the impacts of different operation parameters (i.e., COD/SO42- ratio, temperature and illumination time) on the UASB performance were explored. Third, the properties of sludge derived from the UASB at different time were analyzed. Results show that after 28 days of start-up, the COD removal efficiencies in both the photoreactor and non-photoreactor could reach a range of 85-90% while such reactors could achieve > 90% of sulfate being removed. Besides, higher illumination time could facilitate the removal of pollutants in the photoreactor. To sum up, the present study can provide technical support for the clean removal of sulfate from wastewater using photoreactors.

4.
J Hazard Mater ; 470: 134304, 2024 May 15.
Article En | MEDLINE | ID: mdl-38615650

In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.


Benzopyrans , Chlorella vulgaris , Chromium , Microalgae , Molecular Weight , Water Pollutants, Chemical , Chromium/metabolism , Chromium/chemistry , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Chlorella vulgaris/drug effects , Water Pollutants, Chemical/metabolism , Microalgae/metabolism , Microalgae/drug effects , Microalgae/growth & development , Benzopyrans/chemistry , Benzopyrans/metabolism
5.
J Hazard Mater ; 470: 134182, 2024 May 15.
Article En | MEDLINE | ID: mdl-38583202

Establishing an economic and sustained Fenton oxidation system to enhance sludge dewaterability and carbamazepine (CBZ) removal rate is a crucial path to simultaneously achieve sludge reduction and harmless. Leveraging the principles akin to "tea making", we harnessed tea waste to continually release tea polyphenols (TP), thus effectively maintaining high level of oxidation efficiency through the sustained Fenton reaction. The results illustrated that the incorporation of tea waste yielded more favorable outcomes in terms of water content reduction and CBZ removal compared to direct TP addition within the Fe(III)/hydrogen peroxide (H2O2) system. Concomitantly, this process mainly generated hydroxyl radical (•OH) via three oxidation pathways, effectively altering the properties of extracellular polymeric substances (EPS) and promoting the degradation of CBZ from the sludge mixture. The interval addition of Fe(III) and H2O2 heightened extracellular oxidation efficacy, promoting the desorption and removal of CBZ. The degradation of EPS prompted the transformation of bound water to free water, while the formation of larger channels drove the discharge of water. This work achieved the concept of treating waste with waste through using tea waste to treat sludge, meanwhile, can provide ideas for subsequent sludge harmless disposal.


Carbamazepine , Hydrogen Peroxide , Iron , Oxidation-Reduction , Sewage , Tea , Water Pollutants, Chemical , Carbamazepine/chemistry , Hydrogen Peroxide/chemistry , Tea/chemistry , Sewage/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Waste Disposal, Fluid/methods , Ferric Compounds/chemistry , Polyphenols/chemistry
6.
Chemosphere ; 355: 141890, 2024 May.
Article En | MEDLINE | ID: mdl-38575085

The co-transport behavior of environmental pollutants with biochar particles has aroused great interests from researchers due to the concerns about pollutant diffusion and environmental exposure after biochar is applied to soil. In this work, the recovery and co-transport behavior of biochar micron-/nano-particles (BCMP and BCNP) and lead (Pb2+) in saturated porous media were investigated under different ionic strength conditions (IS = 1, 5 and 10 mM) under a direct current electric field. The results showed that the electric field could significantly enhance the mobility of Pb adsorbed biochar particles, particularly BCNP. The recovery of Pb laden biochar particles was improved by 1.8 folds, reaching 78.8% at maximum under favorable condition at +0.5 V cm-1. According to the CDE (Convection-Dispersion-Equation) model and DLVO (Derjaguin-Landau-Verwey-Overbeek) theory analysis, the electric field facilitated the transport of Pb carried biochar mainly by increasing the negative charges on biochar surface and improving the repulsive force between biochar and porous media. High IS was favorable for biochar transport under the electric field, but inhibited desorbing Pb2+ from biochar (18% by maximum at IS = 10 mM). By switching the electric field power, a two-stage strategy was established to maximize the recovery of both biochar particles and Pb, where BCNP and Pb recovery were higher than electric field free case by 90% and 35%, respectively. The findings of this study can help build a biochar recovery approach to prevent potential risks from biochar application in heavy metal contaminated soil remediation.


Environmental Pollutants , Soil Pollutants , Lead , Porosity , Charcoal , Soil , Soil Pollutants/analysis
7.
Sci Total Environ ; 928: 172440, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38614328

Ammonium removal by a symbiosis system of algae (Chlorella vulgaris) and nitrifying bacteria was evaluated in a long-term photo-sequencing batch reactor under varying influent inorganic carbon (IC) concentrations (15, 10, 5 and 2.5 mmol L-1) and different nitrogen loading rate (NLR) conditions (270 and 540 mg-N L-1 d-1). The IC/N ratios provided were 2.33, 1.56, 0.78 and 0.39, respectively, for an influent NH4+-N concentration of 90 mg-N L-1 (6.43 mmol L-1). The results confirmed that both ammonium removal and N2O production were positively related with IC concentration. Satisfactory ammonium removal efficiencies (>98 %) and rates (29-34 mg-N gVSS-1 h-1) were achieved regardless of NLR levels under sufficient IC of 10 and 15 mmol L-1, while insufficient IC at 2.5 mmol L-1 led to the lowest ammonium removal rates of 0 mg-N gVSS-1 h-1. The ammonia oxidation process by ammonia oxidizing bacteria (AOB) played a predominant role over the algae assimilation process in ammonium removal. Long-time IC deficiency also resulted in the decrease in biomass and pigments of algae and nitrifying bacteria. IC limitation led to the decreasing N2O production, probably due to its negative effect on ammonia oxidation by AOB. The optimal IC concentration was determined to be 10 mmol L-1 (i.e., IC/N of 1.56, alkalinity of 500 mg CaCO3 L-1) in the algae-bacteria symbiosis reactor, corresponding to higher ammonia oxidation rate of ∼41 mg-N gVSS-1 h-1 and lower N2O emission factor of 0.13 %. This suggests regulating IC concentrations to achieve high ammonium removal and low carbon emission simultaneously in the algae-bacteria symbiosis wastewater treatment process.


Ammonium Compounds , Carbon , Nitrification , Symbiosis , Carbon/metabolism , Ammonium Compounds/metabolism , Waste Disposal, Fluid/methods , Bacteria/metabolism , Chlorella vulgaris/metabolism , Nitrous Oxide/metabolism , Bioreactors , Water Pollutants, Chemical/metabolism , Nitrogen/metabolism
8.
Chemosphere ; 353: 141580, 2024 Apr.
Article En | MEDLINE | ID: mdl-38430943

Information on biotransformation of antivirals in the side-stream partial nitritation (PN) process was limited. In this study, a side-stream PN sludge was adopted to investigate favipiravir biotransformation under controlled ammonium and pH levels. Results showed that free nitrous acid (FNA) was an important factor that inhibited ammonia oxidation and the cometabolic biodegradation of favipiravir induced by ammonia oxidizing bacteria (AOB). The removal efficiency of favipiravir reached 12.6% and 35.0% within 6 days at the average FNA concentrations of 0.07 and 0.02 mg-N L-1, respectively. AOB-induced cometabolism was the sole contributing mechanism to favipiravir removal, excluding AOB-induced metabolism and heterotrophic bacteria-induced biodegradation. The growth of Escherichia coli was inhibited by favipiravir, while the AOB-induced cometabolism facilitated the alleviation of the antimicrobial activities with the formed transformation products. The biotransformation pathways were proposed based on the roughly identified structures of transformation products, which mainly involved hydroxylation, nitration, dehydrogenation and covalent bond breaking under enzymatic conditions. The findings would provide insights on enriching AOB abundance and enhancing AOB-induced cometabolism under FNA stress when targeting higher removal of antivirals during the side-stream wastewater treatment processes.


Amides , Ammonium Compounds , Pyrazines , Sewage , Ammonia/toxicity , Ammonia/metabolism , Rivers , Oxidation-Reduction , Nitrous Acid , Biotransformation , Antiviral Agents/toxicity , Bioreactors , Nitrites
9.
Sci Total Environ ; 924: 171430, 2024 May 10.
Article En | MEDLINE | ID: mdl-38458457

Fe(VI), as a new green treatment agent, has two indispensable processes in water treatment: coagulation and oxidation. Fe(VI) has a strong oxidation ability. The intermediate iron species (Fe(V) and Fe(IV)) and reactive radical species (H2O2, •OH, and O2•-) produced by decomposition and reduction reaction have strong oxidation ability, in addition, the hydrolyzed product formed in situ with core (γ-Fe2O3)-shell (γ-FeOOH) structure also has good coagulation effect. Because Fe(VI) is easy to decompose and challenging to preserve, it limits the application and sometimes significantly reduces the subsequent processing effect. How to make Fe(VI) more efficient use is a hot spot in current research. This article summarizes the distribution of active substances during the hydrolysis of Fe(VI), distinguish the differences mechanisms in the similar regulation methods, reviews the current preparation methods of Fe(VI), and finally reviews the applications of Fe(VI) in the field of environmental remediation.

10.
Bioresour Technol ; 397: 130470, 2024 Apr.
Article En | MEDLINE | ID: mdl-38395236

Here, Baijiu distillers' grains (BDGs) were employed in biorefinery development to generate value-added co-products and bioethanol. Through ethyl acetate extraction at a 1:6 solid-liquid ratio for 10 h, significant results were achieved, including 100 % lactic acid and 92 % phenolics recovery. The remaining BDGs also achieved 99 % glucan recovery and 81 % glucan-to-glucose conversion. Simultaneous saccharification and fermentation of remaining BDGs at 30 % loading resulted in 78.5 g bioethanol/L with a yield of 94 %. The minimum selling price of bioethanol varies from $0.149-$0.836/kg, contingent on the co-product market prices. The biorefinery processing of one ton of BDGs caused a 60 % reduction in greenhouse gas emissions compared to that of the traditional production of 88 kg corn-lactic acid, 70 kg antioxidant phenolics, 234 kg soybean protein, and 225 kg corn-bioethanol, along with emissions from BDG landfilling. The biorefinery demonstrated a synergistic model of cost-effective bioethanol production and low-carbon emission BDGs treatment.


Environment , Glucans , Cost-Benefit Analysis , Fermentation , Lactic Acid
11.
J Environ Manage ; 351: 119988, 2024 Feb.
Article En | MEDLINE | ID: mdl-38181686

Microplastics are found ubiquitous in the natural environment and are an increasing source of worry for global health. Rapid industrialization and inappropriate plastic waste management in our daily lives have resulted in an increase in the amount of microplastics in the ecosystem. Microplastics that are <150 µm in size could be easily ingested by living beings and cause considerable toxicity. Microplastics can aggregate in living organisms and cause acute, chronic, carcinogenic, developmental, and genotoxic damage. As a result, a sustainable approach to reducing, reusing, and recycling plastic waste is required to manage microplastic pollution in the environment. However, there is still a significant lack of effective methods for managing these pollutants. As a result, the purpose of this review is to convey information on microplastic toxicity and management practices that may aid in the reduction of microplastic pollution. This review further insights on how plastic trash could be converted as value-added products, reducing the load of accumulating plastic wastes in the environment, and leading to a beneficial endeavor for humanity.


Environmental Pollutants , Water Pollutants, Chemical , Microplastics , Plastics , Ecosystem , Environmental Pollution/prevention & control , Water Pollutants, Chemical/analysis , Environmental Monitoring
12.
Sci Total Environ ; 915: 169897, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38184250

pH treatment promotes single-cell lipid accumulation and significantly affects microalgae growth. This study investigates the correlation between lipid content and environmental pH using the model diatom Phaeodactylum tricornutum (P. tricornutum). We compared three distinct pH treatment strategies-continuous, intermittent, and a two-phase culture-in P. tricornutum. Rigorous analysis of chlorophyll content, cell density, and lipid content indicated that ongoing pH treatment at pH 9.5 (CHES) emerged as the most effective approach for lipid accumulation in P. tricornutum. The CHES buffer treatment significantly boosted total lipid yield and led to a reduction in protein content. Carbohydrate content experienced a slight decline under CHES buffer treatment, but changes were observed in the activities of key enzymes. Specifically, [acyl-carrier-protein] S-malonyltransferase (MAT) activity decreased after 3 days in the control treatment, while no significant change was noted under the CHES buffer treatment. In contrast, diacylglycerol O-acyltransferase (DGAT) activity showed upregulation 2 and 3 days post-CHES buffer treatment. Moreover, the study identified differentially expressed genes enriched in Gene Ontology (GO) terms associated with protein biosynthesis, photosynthesis, nucleoside metabolism, and transferase activity. These outcomes underscore the pivotal role of CHES buffer in orchestrating primary metabolism, potentially steering carbon flux towards lipogenesis. As a result, the potential of microalgae as a sustainable source of biofuels contributes significantly to the transition towards a more environmentally friendly energy landscape.


Diatoms , Taurine/analogs & derivatives , Photosynthesis , Lipids , Hydrogen-Ion Concentration
13.
Bioresour Technol ; 393: 130081, 2024 Feb.
Article En | MEDLINE | ID: mdl-37993067

The sulfur fluidizing bioreactor (S0FB) has significant superiorities in treating nitrate-rich wastewater. However, substantial self-acidification has been observed in engineering applications, resulting in frequent start-up failures. In this study, self-acidification was reproduced in a lab-scale S0FB. It was demonstrated that self-acidification was mainly induced by sulfur disproportionation process, accounting for 93.4 % of proton generation. Supplying sufficient alkalinity to both the influent (3000 mg/L) and the bulk (2000 mg/L) of S0FB was essential for achieving a successful start-up. Furthermore, the S0FB reached 10.3 kg-N/m3/d of nitrogen removal rate and 0.13 kg-PO43-/m3/d of phosphate removal rate, respectively, surpassing those of the documented sulfur packing bioreactors by 7-129 times and 26-65 times. This study offers a feasible and practical method to avoid self-acidification during restart of S0FB and highlights the considerable potential of S0FB in the treatment of nitrate-rich wastewater.


Nitrates , Wastewater , Autotrophic Processes , Denitrification , Sulfur , Bioreactors , Hydrogen-Ion Concentration , Nitrogen
14.
Sci Total Environ ; 912: 169113, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38065499

Landslides endanger lives and public infrastructure in mountainous areas. Monitoring landslide traces in real-time is difficult for scientists, sometimes costly and risky because of the harsh terrain and instability. Nowadays, modern technology may be able to identify landslide-prone locations and inform locals for hours or days when the weather worsens. This study aims to propose indicators to detect landslide traces on the fields and remote sensing images; build deep learning (DL) models to identify landslides from Sentinel-2 images automatically; and apply DL-trained models to detect this natural hazard in some particular areas of Vietnam. Nine DL models were trained based on three U-shaped architectures, including U-Net, U2-Net, and U-Net3+, and three options of input sizes. The multi-temporal Sentinel-2 images were chosen as input data for training all models. As a result, the U-Net, using an input image size of 32 × 32 and a performance of 97 % with a loss function of 0.01, can detect typical landslide traces in Vietnam. Meanwhile, the U-Net (64 × 64) can detect more considerable landslide traces. Based on multi-temporal remote sensing data, a different case study in Vietnam was chosen to see landslide traces over time based on the trained U-Net (32 × 32) model. The trained model allows mountain managers to track landslide occurrences during wet seasons. Thus, landslide incidents distant from residential areas may be discovered early to warn of flash floods.

15.
Water Res ; 250: 121057, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38157601

Extracellular polymeric substances (EPS) regulated by quorum sensing (QS) could directly mediate adhesion between microorganisms and form tight microbial aggregates. Besides, EPS have redox properties, which can facilitate electron transfer for promoting electroactive bacteria. Currently, the applications research on improving wastewater biological treatment performance based on QS regulated EPS have been widely reported, but reviews on the level of QS regulated EPS to enhance EPS function in microbial systems are still lacking. This work proposes the potential mechanisms of EPS synthesis by QS regulation from the viewpoint of material metabolism and energy metabolism, and summarizes the effects of QS on EPS synthesis. By synthesizing the role of QS in EPS regulation, we further point out the applications of QS-regulated EPS in wastewater biological treatment, which involve a series of aspects such as strengthening microbial colonization, mitigating membrane biofouling, improving the shock resistance of microbial metabolic systems, and strengthening the electron transfer capacity of microbial metabolic systems. According to this comprehensive review, future research on QS-regulated EPS should focus on the exploration of the micro-mechanisms, and economic regulation strategies for QS-regulated EPS should be developed, while the stability of QS-regulated EPS in long-term production experimental research should be further demonstrated.


Quorum Sensing , Wastewater , Polymers , Sewage/microbiology , Bioreactors/microbiology
16.
Water Res ; 247: 120779, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37897993

Riverine ecosystems are a significant source of nitrous oxide (N2O) worldwide, but how they respond to human and natural changes remains unknown. In this study, we developed a compound model chain that integrates mechanism-based modeling and machine learning to understand N2O transfer patterns within land, rivers, and the atmosphere. The findings reveal a decrease in N2O emissions in the Yangtze River basin from 4.7 Gg yr-1 in 2000 to 2.8 Gg yr-1 in 2019, with riverine emissions accounting for 0.28% of anthropogenic nitrogen discharges from land. This unexpected reduction is primarily attributed to improved water quality from human-driven nitrogen control, while natural factors contributed to a 0.23 Gg yr-1 increase. Notably, urban rivers exhibited a more rapid N2O efflux ( [Formula: see text] ), with upstream levels nearly 3.1 times higher than rural areas. We also observed nonlinear increases in [Formula: see text] with nitrogen discharge intensity, with urban areas showing a gradual and broader range of increase compared to rural areas, which exhibited a sharper but narrower increase. These nonlinearities imply that nitrogen control measures in urban areas lead to stable reductions in N2O emissions, while rural areas require innovative nitrogen source management solutions for greater benefits. Our assessment offers fresh insights into interpreting riverine N2O emissions and the potential for driving regionally differentiated emission reductions.


Nitrogen , Rivers , Humans , Nitrogen/analysis , Ecosystem , Environmental Monitoring , Nitrous Oxide/analysis , Atmosphere , China
17.
Chemosphere ; 343: 140255, 2023 Dec.
Article En | MEDLINE | ID: mdl-37741367

The interplay between CO2 input and light intensity is investigated to provide new insight to optimise microalgae growth rate in photobioreactors for environmental remediation, carbon capture, and biomass production. Little is known about the combined effect of carbon metabolism and light intensity on microalgae growth. In this study, carbonated water was transferred to the microalgae culture at different rates and under different light intensities for observing the carbon composition and growth rate. Results from this study reveal opposing effects from CO2 input and light intensity on the culture solution pH and ultimately microalgae growth rate. Excessive CO2 concentration can inhibit microalgae growth due to acidification caused by CO2 dissolution. While increasing light intensity can increase pH because the carboxylation process consumes photons and transfers hydrogen ions into the cell. This reaction is catalysed by the enzyme RuBisCO, which functions optimally within a specific pH range. By balancing CO2 input and light intensity, high microalgae growth rate and carbon capture could be achieved. Under the intermittent CO2 transfer mode, at the optimal condition of 850 mg/L CO2 input and 1089 µmol/m2/s light intensity, leading to the highest microalgae growth rate and carbon fixation of 4.2 g/L as observed in this study.

18.
Environ Res ; 238(Pt 2): 117213, 2023 12 01.
Article En | MEDLINE | ID: mdl-37776937

Sulfur-packed beds (SPBs) have been increasingly incorporated into constructed wetland systems to overcome limitations in achieving satisfactory nitrate removal efficiency. However, the underlying impact of hydraulic regimes on SPB performance remains understudied. This study investigated the performance of a pilot-scale SPB, encompassing sulfur autotrophic denitrification (SAD) and sulfur disproportionation (SDP) processes, under various horizontal flow (HF) and vertical flow (VF) regimes. The HF regime exhibited superior SAD efficiency, achieving 3.1-4.4 mg-N/L of nitrate removal compared to 0.9-2.8 mg-N/L under VF regimes. However, greater sulfide production of 3.8-5.6 mg/L was observed, in contrast to only 1.5-2.3 mg/L under VF regimes when SDP occurred. Employing current computational fluid dynamics simulations could predict general regimes but lacked precision in detailing sulfur layer dynamics. In contrast, determining the spatial distribution of SAD substrates and SDP products offered a viable solution, revealing stagnate, short-circuit, and back flows. Moreover, the feasibility of an aeration approach to reduce sulfide emissions below 0.5 mg/L in case of accidental SDP occurrence was confirmed. This study offers a method for assessing detailed hydraulic regimes within SPBs. Additionally, it provides guidance on optimizing the packing of sulfur-based materials when implementing SPBs in constructed wetland systems and presents a strategy for mitigating excessive sulfide emissions.


Denitrification , Nitrates , Sulfur , Wetlands , Sulfides , Bioreactors , Nitrogen
19.
J Hazard Mater ; 459: 132171, 2023 10 05.
Article En | MEDLINE | ID: mdl-37527591

Green microalgae are highly efficient and cost-effective in the removal of heavy metals from water. However, dissolved organic matter (DOM), such as fulvic acid (FA), can impact their growth and heavy metal accumulation. Nonetheless, the specific mechanisms underlying these effects remain poorly understood. This study investigated the effects of different FA concentrations on the development, metabolism, and chromium (Cr) enrichment of Chlorella vulgaris, a standard green microalga. The findings revealed that low FA concentrations alleviated Cr-induced stress, stimulated microalgal growth, and enhanced energy conservation by suppressing chlorophyll synthesis. The highest chromium enrichment and reduction rates of 38.73% and 57.95% were observed when FA concentration reached 20 mg/L of total organic carbon (TOC). Furthermore, FA facilitated chromium removal by C. vulgaris through extracellular adsorption. Examination of microalgal cell surface functional groups and ultrastructure indicated that FA increased adsorption site electrons by promoting extracellular polymeric substance (EPS) secretion and enhancing the oxygen content of acidic functional groups. As a result, FA contributed to elevated enrichment and reduction rates of Cr in microalgal cells. These findings provide a theoretical basis for the prevention and control of heavy metal pollution in water environments.


Chlorella vulgaris , Microalgae , Microalgae/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Chromium/metabolism , Water , Adsorption
20.
Sci Total Environ ; 902: 166111, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37567299

Shrimp farming has strongly developed in recent years, and became an important economic sector that helps create jobs and increase incomes for Vietnamese. However, the aquatic environment has also been greatly affected by the development due to the amount of wastewater discharged from shrimp farms. Among biological processes used for treating shrimp farming wastewater, the application of microalgae-bacteria co-culture is considered high potential due to its treatment and energy saving. Consequently, a photobioreactor operated with microalgae-bacteria co-culture was employed to treat shrimp farming wastewater. The salinity of wastewater and the operating condition (ratio of biomass retention time and hydraulic retention time, BRT/HRT) are the major factors affecting pollutant removal. Thus, this study investigated the effects of salinities of 0.5-20 ppt and BRT/HRT ratios of 1.5-16 on the removal performance. The results indicated that the nutrient removal was reduced when PBR operated under salinity over than 10 ppt and BRT/HRT over 5.5. Particularly, the nitrogen and phosphorus removal rates were achieved 6.56 ± 1.33 gN m-3 d-1 and 1.49 ± 0.59 gP m-3 d-1, and the removal rates decreased by 2-4 times under a salinity >10 ppt and 2-6 times under a BRT/HRT ratio >5.5. Whereas, organic matter treatment seems not to be affected when the removal rate was maintained at 28-34 gCOD m-3 d-1 under various conditions.


Microalgae , Wastewater , Symbiosis , Salinity , Bacteria , Agriculture , Biomass , Nitrogen/analysis , Phosphorus
...